Love this. I don’t know much about risc-v but I’d love to see it disrupt the market a bit.
This board also has soldered memory and uses MicroSD cards and eMMC for storage, both of which are limitations of the processor.
Ah, yeah, hard no from me dog. Can we get one of the new Snapdragons tho? Please?
Qualcomm and Broadcom are the two biggest reasons you don’t own your devices any more. That is the last option anyone that cares about ownership should care about. You should expect an orphaned kernel just like all their other mobile garbage. Qualcomm is like the Satan of hardware manufacturers. The world would be a much better place if Qualcomm and Broadcom were not in it at all.
What did they do ? I thought all processor are following standards hence I am running Linux on my Intel or AMD CPU.
All their hardware documentation is locked under NDA nothing is publicly available about the hardware at the hardware registers level.
For instance, the base Android system AOSP is designed to use Linux kernels that are prepackaged by Google. These kernels are well documented specifically for manufacturers to add their hardware support binary modules at the last possible moment in binary form. These modules are what makes the specific hardware work. No one can update the kernel on the device without the source code for these modules. As the software ecosystem evolves, the ancient orphaned kernel creates more and more problems. This is the only reason you must buy new devices constantly. If the hardware remained undocumented publicly while just the source code for modules present on the device was merged with the kernel, the device would be supported for decades. If the hardware was documented publicly, we would write our own driver modules and have a device that is supported for decades.
This system is about like selling you a car that can only use gas that was refined prior to your purchase of the vehicle. That would be the same level of hardware theft.
The primary reason governments won’t care or make effective laws against orphaned kernels is because the bleeding edge chip foundries are the primary driver of the present economy. This is the most expensive commercial endeavor in all of human history. It is largely funded by these devices and the depreciation scheme.
That is both sides of the coin, but it is done by stealing ownership from you. Individual autonomy is our most expensive resource. It can only be bought with blood and revolutions. This is the primary driver of the dystopian neofeudalism of the present world. It is the catalyst that fed the sharks that have privateered (legal piracy) healthcare, home ownership, work-life balance, and democracy. It is the spark of a new wave of authoritarianism.
Before the Google “free” internet (ownership over your digital person to exploit and manipulate), all x86 systems were fully documented publicly. The primary reason AMD exists is because we (the people) were so distrusting over these corporations stealing and manipulating that governments, militaries, and large corporations required second sourcing of chips before purchasing with public funds. We knew that products as a service - is a criminal extortion scam, way back then. AMD was the second source for Intel and produced the x86 chips under license. It was only after that when they recreated an instructions compatible alternative from scratch. There was a big legal case where Intel tried to claim copyright over their instruction set, but they lost. This created AMD. Since 2012, both Intel and AMD have proprietary code. This is primarily because the original 8086 patents expired. Most of the hardware could be produced anywhere after that. In practice there are only Intel, TSMC, and Samsung on bleeding edge fab nodes. Bleeding edge is all that matters. The price is extraordinary to bring one online. The tech it requires is only made once for a short while. The cutting edge devices are what pays for the enormous investment, but once the fab is paid for, the cost to continue running one is relatively low. The number of fabs within a node is carefully decided to try and accommodate trailing edge node demand. No new trailing edge nodes are viable to reproduce. There is no store to buy fab node hardware. As soon as all of a node’s hardware is built by ASML, they start building the next node.
But if x86 has proprietary, why is it different than Qualcomm/Broadcom - no one asked. The proprietary parts are of some concern. There is an entire undocumented operating system running in the background of your hardware. That’s the most concerning. The primary thing that is proprietary is the microcode. This is basically the power cycling phase of the chip, like the order that things are given power, and the instruction set that is available. Like how there are not actual chips designed for most consumer hardware. The dies are classed by quality and functionality and sorted to create the various products we see. Your slower speed laptop chip might be the same as a desktop variant that didn’t perform at the required speed, power is connected differently, and it becomes a laptop chip.
When it comes to trending hardware, never fall for the Apple trap. They design nice stuff, but on the back end, Apple always uses junky hardware, and excellent in house software to make up the performance gap. They are a hype machine. The only architecture that Apple has used and hasn’t abandoned because it went defunct is x86. They used MOS in the beginning. The 6502 was absolute trash compared to the other available processors. It used a pipeline trick to hack twice the actual clock speed because they couldn’t fab competitive quality chips. They were just dirt cheap compared to the competition. Then it was Motorola. Then Power PC. All of these are now irrelevant. The British group that started Acorn sold the company right after RISC-V passed the major hurtle of getting past Berkeley’s ownership grasp. It is a slow moving train, like all hardware, but ARM’s days are numbered. RISC-V does the same fundamental thing without the royalty. There is a ton of hype because ARM is cheap and everyone is trying to grab the last treasure chests they can off the slow sinking ship. In 10 years it will be dead in all but old legacy device applications. RISC-V is not a guarantee of a less proprietary hardware future, but ARM is one of the primary cornerstones blocking end user ownership. They are enablers for thieves; the ones opening your front door to let the others inside. Even the beloved raspberry pi is a proprietary market manipulation and control scheme. It is not actually open source at the registers level and it is priced to prevent the scale viability of a truly open source and documented alternative. The chips are from a failed cable TV tuner box, and they are only made in a trailing edge fab when the fab has no other paid work. They are barely above cost and a tax write off, thus the “foundation” and dot org despite selling commercial products.
Not the case with ARM processors sadly, IMO they’re a bit of a mess from that perspective. Proprietary blobs for hardware, unusual kernel hacks for some devices, and no device tree support so you can’t just boot any image on any device. I think Windows for ARM encouraged some standardization in that regard, but for the most part looking at Android devices it’s still very much the wild west.
This is one of the many reasons why Raspberry Pi ARM boards remain popular for the time being, despite there being so many other cheap alternatives available: they actually keep supporting their old boards & ensure hardware on their boards works from the get-go.
There are also some rare cases where Raspberry Pi rewrite open source implementations of Broadcom’s proprietary blob drivers, in one instance for the built in CSI (optional camera)
Wasn’t there a bounty out like 10 years ago for writing an open source alternative to the video drivers? I remember reading about that.
They make a bunch of the other chips that go into computer devices, and from what I understand it’s binary blob or nothing for a lot of it?
Both Intel and AMD invest a lot into open source drivers, firmware and userspace applications, but also due to the nature of X86_64’s UEFI, a lot of the proprietary crap is loaded in ROM on the motherboard, and as microcode.
I work with SoC suppliers, including Qualcomm and can confirm; you need to sign an NDA to get a highly patched old orphaned kernel, often with drivers that are provided only as precompiled binaries, preventing you updating the kernel yourself.
If you want that source code, you need to also pay a lot of money yearly to be a Qualcomm partner and even then you still might not have access to the sources for all the binaries you use. Even when you do get the sources, don’t expect them to be updated for new kernel compatibility; you’ve gotta do that yourself.
Many other manufacturers do this as well, but few are as bad. The environment is getting better, but it seems to be a feature that many large manufacturers feel they can live without.
How’s this possible with the kernel under gpl? If you’re getting precompiled binaries, shouldn’t you also be able to get their sources by law?
Kernel modules don’t have to be open source provided they follow certain rules like not using gpl only symbols. This is the same reason you can use an NVIDIA driver.
Its not enforced so much by law as what the fsf and Linux foundation can prove and are willing to pursue; going after a company that size is expensive, especially when they’re a Linux foundation partner. A lot of major Linux foundation partners are actively breaking the GPL.
This is a dev kit. This is not for normal people to use. RISC-V is not there yet, but this is a good first step.
At the point you want to upgrade this chip swapping out the entire SOC including the RAM is likely a better option.
Could someone eli5 risc-v and why the fuss?
Edit: thanks for the replies. Searchingnfurther, this 15 min video is quite well made and told me more than I need to know (for now) https://www.youtube.com/watch?v=Ps0JFsyX2fU
RISC-V (pronounced risk five), is a Free open-source Instruction Set Architecture (ISA). Other well established ISA like x86, amd64 (Intel and AMD) and ARM, are proprietary and therefore, one must pay every expensive licenses to design and build a processor using these architectures. You don’t need to pay a license to build a RISC-V processor, you only need to follow the specifications. That doesn’t mean the CPU design is also free, no, they stay very much the closed property of the designer, but RISC-V represents non the less, a very big step towards more transparency and technology freedom.
I pity the five year old who has to read this.
I’m a grown up though so thank you for the explanation.
Yes, I admit it’s still a pretty complex explanation. I gave it my best shot :)
deleted by creator
deleted by creator
This board has the StarFive JH7110 SoC. That processor has previously been in very low power single board computers like StarFive VisionFive 2 (2022) and Milk-V Mars (2023), a Raspberry Pi clone that can be bought for as low as $40. Its storage limitations (SD/eMMC rather than NVMe) show how much this isn’t meant for laptop use.
Very underpowered for a laptop too, even when considering this is intended for developers and doesn’t need to be remotely performance competitive. Consider that this has just 4 RV64GC cores, the cheapest Intel board options Framework offers are 12 cores (4P+8E), and any modern RISC-V core is far simpler with less area than even an Intel E core. These cores also lack the RISC-V vector instructions extension.
VisionFive 2 isn’t going to blow the doors off anything but it is very stable with Fedora 40. Also, I can’t speak for the Mars, but the VisionFive 2 has NVME and it works fine booting from it with the patches that were accepted for 6.11.
Hopefully it does well and we see some newer versions of the board.
When the first person opens their new laptop:
“RISC architecture is going to change everything”
Slow down there, Zerocool
That movie was ahead of its time in so many ways
Removed by mod
As if managers even know what RISC-V is
They prefer RISC-0, and MONEY-5
Great, I’d be glad if they would consider shipping to more countries as well with localized keyboards
I mean, they at least offer a blank + clear ANSI and blank + clear ISO keyboard options along side their 14 other keyboard formats.
Yes that’s amazing — but a blank keyboard is not for everyone.
Moreover, even if I try to cope with this setup, I still cannot receive the laptop and I’d have to use a power adapter
It’s just usb-c power right?
Yes, and so what?
As surprising as it may seem, some might still want to use the supplied charger because they don’t have spare ones powerful enough for the laptop.
I have a Macbook with Magsafe and 6 USB-C phone / small devices chargers. None of them could power a Frame.work so I cannot just use another charger because it’s usb-c
Just buy one if you need. I don’t understand people who prefer forced bundles over deciding what to buy.
Unless you think an included charger is free. It’s not, it’s factored in the price.
Unless you think an included charger is free
Spot on, last time I bought a laptop it came with a charger, so that’s why I was referring to this and why I was concerned about its compatibility with my power plugs.
As I was still unable to order a frame.work yet I wasn’t aware that frame.work didn’t include by default a charger, so your point makes perfect sense.
In this case then I’ll probably end up buying a charger — because none of them in my possession is able to cope with the watts required.
That’s great but they need to fix their hinges first.
They did, almost immediately after it became a known issue.
Didn’t they in the new models?
Just asking.