Yes, but with a light and efficient vehicle, along with enough area covered in solar, it should be able to get you about 15 miles of free travel when left out on a sunny day. It has a battery. It isn’t just running on sunshine and lollipops.
The body weighs around 360kg, with a 60kwh battery it supposedly weighs around 800kg (the smallest and lightest option is 25kwh), with a drag coefficient of 0.13.
In comparison to some of the most efficient cars - the Hyundai Ioniq 6 is around 1,860kg with a drag coefficient of 0.21. Tesla Model 3 is around 1760kg with a drag coefficient of 0.219.
It’s going to be a whole lot more efficient than the average car just based on these numbers.
Now it depends on how much of the car’s surface will be covered by the solar panel and what’s the panel’s efficiency.
The Honda civics in the 1980’s weighed around 800 or so kg as well. You know one of the reasons they got heavier? Crash ratings and safety features.
So once again I’m calling bs that they will get 45 miles out of this. Even if they got it classified as a motorcycle and scape around the car safety requirements, it still won’t get a real world 45 miles a day from solar charging. Your math will never add up to that.
That’s a weird comparison to make. The Aptera is smaller and uses different materials.
Afaik it’s going to be classified as a motorcycle in many states in the USA, but they’re still aiming for a high rating. I know they have crumple zones and a safety cell made from composites akin to F1 cars.
Whether what they’re planning will be enough, we’ll only know for sure once they test it.
The math works quite well as long as the information is accurate.
Of course things can always turn up to be different in the end product.
But from the information we have now, ~4 hours of good sunlight conditions will be enough for 43 miles.
Yeah, this is why it’s dumb. When is a parked car parked ideally to capture sunlight? Just put the money into solar panels on a building or in a field, charge your car when parked, and you have a much better and cheaper product. The solar panels on the building can also be used to power other things, unlike the car. It’s such a stupid idea and will be very expensive to get custom panels for the car that aren’t super fragile and also efficient. Just spend that money and larger cheap panels. This is purely to get VC funding and nothing more. It’s a waste of time and energy.
Again, I said ideally. When will it ever outperform solar on a rooftop of the same size? How much more size could you get for the price?
It would never overcome its opportunity cost, even if it recovers it’s cost (which you’re speculating on and have no idea of the cost). You could spend the extra money for a solar car, or spend the money for rooftop solar. Rooftop solar will always outperform it for the price, so you have a negative opportunity cost.
I mean, it’d be cool to get a couple miles of range here and there without having to plug in. Could make for a nice little errand vehicle in a smaller city where there aren’t trees or tall buildings to block light and you just park in a driveway or apartment parking lot. If say the battery itself would be big enough for an 80 mile range, I could see some people never having to plug this car in.
It’ll come down to price, of course. If it’s cheap, it could be cool and useful. If it’s expensive, it’s a novelty and would have no practical reasoning to be purchased.
The base model has a 250mi range, and the biggest boi battery is estimated to get close to an 800mi range. The batteries are almost half the size of other EV batteries because of how efficient this vehicle is.
Yes, but with a light and efficient vehicle, along with enough area covered in solar, it should be able to get you about 15 miles of free travel when left out on a sunny day. It has a battery. It isn’t just running on sunshine and lollipops.
Or 43 miles in Aptera’s case
I’m not believing they’ll get even close to that in a production vehicle that’s US street legal.
The body weighs around 360kg, with a 60kwh battery it supposedly weighs around 800kg (the smallest and lightest option is 25kwh), with a drag coefficient of 0.13.
In comparison to some of the most efficient cars - the Hyundai Ioniq 6 is around 1,860kg with a drag coefficient of 0.21. Tesla Model 3 is around 1760kg with a drag coefficient of 0.219.
It’s going to be a whole lot more efficient than the average car just based on these numbers.
Now it depends on how much of the car’s surface will be covered by the solar panel and what’s the panel’s efficiency.
The Honda civics in the 1980’s weighed around 800 or so kg as well. You know one of the reasons they got heavier? Crash ratings and safety features.
So once again I’m calling bs that they will get 45 miles out of this. Even if they got it classified as a motorcycle and scape around the car safety requirements, it still won’t get a real world 45 miles a day from solar charging. Your math will never add up to that.
That’s a weird comparison to make. The Aptera is smaller and uses different materials.
Afaik it’s going to be classified as a motorcycle in many states in the USA, but they’re still aiming for a high rating. I know they have crumple zones and a safety cell made from composites akin to F1 cars.
Whether what they’re planning will be enough, we’ll only know for sure once they test it.
The math works quite well as long as the information is accurate.
Of course things can always turn up to be different in the end product.
But from the information we have now, ~4 hours of good sunlight conditions will be enough for 43 miles.
The Honda Civics of the 1980s did not have a drag coefficient below 0.2
Yeah, this is why it’s dumb. When is a parked car parked ideally to capture sunlight? Just put the money into solar panels on a building or in a field, charge your car when parked, and you have a much better and cheaper product. The solar panels on the building can also be used to power other things, unlike the car. It’s such a stupid idea and will be very expensive to get custom panels for the car that aren’t super fragile and also efficient. Just spend that money and larger cheap panels. This is purely to get VC funding and nothing more. It’s a waste of time and energy.
In america? Litterally everywhere. Even driving down the highway would get trickle charging.
If your expecting to fully charge from the panels, youre gonna have a bad day. But every extra mile would overcome the cost over its lifetime.
Again, I said ideally. When will it ever outperform solar on a rooftop of the same size? How much more size could you get for the price?
It would never overcome its opportunity cost, even if it recovers it’s cost (which you’re speculating on and have no idea of the cost). You could spend the extra money for a solar car, or spend the money for rooftop solar. Rooftop solar will always outperform it for the price, so you have a negative opportunity cost.
Look at you owning a rooftop to put solar on.
A lot of americans are renters and that number is unfortunately growing.
I mean, it’d be cool to get a couple miles of range here and there without having to plug in. Could make for a nice little errand vehicle in a smaller city where there aren’t trees or tall buildings to block light and you just park in a driveway or apartment parking lot. If say the battery itself would be big enough for an 80 mile range, I could see some people never having to plug this car in.
It’ll come down to price, of course. If it’s cheap, it could be cool and useful. If it’s expensive, it’s a novelty and would have no practical reasoning to be purchased.
The base model has a 250mi range, and the biggest boi battery is estimated to get close to an 800mi range. The batteries are almost half the size of other EV batteries because of how efficient this vehicle is.
That’ll be super interesting if it ends up staying that way.