• 1 Post
  • 26 Comments
Joined 1 year ago
cake
Cake day: June 15th, 2023

help-circle

  • Thanks for that read. I definitely agree with the author for the most part. I don’t really agree that current LLMs are a form of AGI, but it’s definitely close.

    But what isn’t up for debate is the fact that LLMs are 100% AI. There’s no debate there. But I think the reason why people argue that is because they conflate “intelligence” with concepts like sapience, sentience, consciousness, etc.

    These people don’t understand that intelligence is a concept that can, and does, exist outside of consciousness.




  • You’re just spouting whataboutism. It’s not an argument, it’s a deflection tactic.

    I have no love for Instagram or Facebook. IMO they should both be banned and have all data erased. The planet would be better off without them.

    But that’s not the topic of conversation.

    The US isn’t an adversarial country to itself. The CCP is an adversarial country to the US, and most of the world.

    which has a more violent history

    Ah yes, so the CCP is A-OK because you claim they have a “less violent history”. Makes perfect sense.

    Tell me, how many people died during the Long March and the “Great” Leap Forward?

    In any case, the bill is not about banning TikTok. The bill is about selling ownership of TikTok to a US owned firm to take away control from the CCP. And then only if a sale cannot be arranged, to ban it as a last resort.




  • A lot of what you said is true.

    Since the TPU is a matrix processor instead of a general purpose processor, it removes the memory access problem that slows down GPUs and CPUs and requires them to use more processing power.

    Just no. Flat out no. Just so much wrong. How does the TPU process data? How does the data get there? It needs to be shuttled back and forth over the bus. Doing this for a 1080p image with of data several times a second is fine. An uncompressed 1080p image is about 8MB. Entirely manageable.

    Edit: it’s not even 1080p, because the image would get resized to the input size. So again, 300x300x3 for the past model I could find.

    /Edit

    Look at this repo. You need to convert the models using the TFLite framework (Tensorflow Lite) which is designed for resource constrained edge devices. The max resolution for input size is 224x224x3. I would imagine it can’t handle anything larger.

    https://github.com/jveitchmichaelis/edgetpu-yolo/tree/main/data

    Now look at the official model zoo on the Google Coral website.

    https://coral.ai/models/

    Not a single model is larger than 40MB. Whereas LLMs start at well over a big for even smaller (and inaccurate) models. The good ones start at about 4GB and I frequently run models at about 20GB. The size in parameters really makes a huge difference.

    You likely/technically could run an LLM on a Coral, but you’re going to wait on the order of double-digit minutes for a basic response, of not way longer.

    It’s just not going to happen.


  • when comparing apples to apples.

    But this isn’t really easy to do, and impossible in some cases.

    Historically, Nvidia has done better than AMD in gaming performance because there’s just so much game specific optimizations in the Nvidia drivers, whereas AMD didn’t.

    On the other hand, AMD historically had better raw performance in scientific calculation tasks (pre-deeplearning trend).

    Nvidia has had a stranglehold on the AI market entirely because of their CUDA dominance. But hopefully AMD has finally bucked that tend with their new ROCm release that is a drop-in replacement for CUDA (meaning you can just run CUDA compiled applications on AMD with no changes).

    Also, AMD’s new MI300X AI processor is (supposedly) wiping the floor with Nvidia’s H100 cards. I say “supposedly” because I don’t have $50k USD to buy both cards and compare myself.


  • And you can add as many TPUs as you want to push it to whatever level you want

    No you can’t. You’re going to be limited by the number of PCI lanes. But putting that aside, those Coral TPUs don’t have any memory. Which means for each operation you need to shuffle the relevant data over the bus to the device for processing, and then back and forth again. You’re going to be doing this thousands of times per second (likely much more) and I can tell you from personal experience that running AI like is painfully slow (if you can get it to even work that way in the first place).

    You’re talking about the equivalent of buying hundreds of dollars of groceries, and then getting everything home 10km away by walking with whatever you can put in your pockets, and then doing multiple trips.

    What you’re suggesting can’t work.


  • ATI cards (while pretty good) are always a step behind Nvidia.

    Ok, you mean AMD. They bought ATI like 20 years ago now and that branding is long dead.

    And AMD cards are hardly “a step behind” Nvidia. This is only true if you buy the 24GB top card of the series. Otherwise you’ll get comparable performance from AMD at a better value.

    Plus, most distros have them working out of the box.

    Unless you’re running a kernel <6.x then every distro will support AMD cards. And even then, you could always install the proprietary blobs from AMD and get full support on any distro. The kernel version only matters if you want to use the FOSS kernel drivers for the cards.








  • Even Microsoft has stated that the majority of the servers being run on Azure are Linux. An MSP usually manages small businesses and maybe a couple midsized businesses. And then ask the doctors clinics, dentist offices, etc.

    Most small business owners are stuck in the early 2000s “can’t use some weird open source commie crap made by some kids in his mom’s basement to do real work” mentality.

    I worked at an MSP myself for a number of years and the fear of anything not Microsoft was palpable.