• 0 Posts
  • 18 Comments
Joined 2 years ago
cake
Cake day: June 15th, 2023

help-circle



  • I work in an area adjacent to autonomous vehicles, and the primary reason has to do with data availability and stability of terrain. In the woods you’re naturally going to have worse coverage of typical behaviors just because the set of observations is much wider (“anomalies” are more common). The terrain being less maintained also makes planning and perception much more critical. So in some sense, cities are ideal.

    Some companies are specifically targeting offs road AVs, but as you can guess the primary use cases are going to be military.






  • The general framework for evolutionary methods/genetic algorithms is indeed old but it’s extremely broad. What matters is how you actually mutate the algorithm being run given feedback. In this case, they’re using the same framework as genetic algorithms (iteratively building up solutions by repeatedly modifying an existing attempt after receiving feedback) but they use an LLM for two things:

    1. Overall better sampling (the LLM has better heuristics for figuring out what to fix compared to handwritten techniques), meaning higher efficiency at finding a working solution.

    2. “Open set” mutations: you don’t need to pre-define what changes can be made to the solution. The LLM can generate arbitrary mutations instead. In particular, AlphaEvolve can modify entire codebases as mutations, whereas prior work only modified single functions.

    The “Related Work” (section 5) section of their whitepaper is probably what you’re looking for, see here.





  • But at least regulators can force NVIDIA to open their CUDA library and at least have some translation layers like ZLUDA.

    I don’t believe there’s anything stopping AMD from re-implementing the CUDA APIs; In fact, I’m pretty sure this is exactly what HIP is for, even though it’s not 100% automatic. AMD probably can’t link against the CUDA libraries like cuDNN and cuBLAS, but I don’t know that it would be useful to do that anyway since I’m fairly certain those libraries have GPU-specific optimizations. AMD makes their own replacements for them anyway.

    IMO, the biggest annoyance with ROCm is that the consumer GPU support is very poor. On CUDA you can use any reasonably modern NVIDIA GPU and it will “just work.” This means if you’re a student, you have a reasonable chance of experimenting with compute libraries or even GPU programming if you have an NVIDIA card, but less so if you have an AMD card.


  • I work in CV and I have to agree that AMD is kind of OK-ish at best there. The core DL libraries like torch will play nice with ROCm, but you don’t have to look far to find third party libraries explicitly designed around CUDA or NVIDIA hardware in general. Some examples are the super popular OpenMMLab/mmcv framework, tiny-cuda-nn and nerfstudio for NeRFs, and Gaussian splatting. You could probably get these to work on ROCm with HIP but it’s a lot more of a hassle than configuring them on CUDA.